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a b s t r a c t 

In vitro diffusive models are an important tool to screen the penetration ability of active ingredients in various 
formulations. A reliable assessment of skin penetration enhancing properties, mechanism of action of carrier 
systems, and an estimation of a bioavailability are essential for transdermal delivery. Given the importance of 
testing the penetration kinetics of different compounds across the skin barrier, several in vitro models have been 
developedThe aim of this study was to compare the Franz Diffusion Cell (FDC) with a novel fluid-dynamic platform 

(MIVO) by evaluating penetration ability of caffeine, a widely used reference substance, and LIP1, a testing 
molecule having the same molecular weight but a different lipophilicity in the two diffusion chamber systems. A 
0.7% caffeine or LIP1 formulation in either water or propylene glycol (PG) containing oleic acid (OA) was topically 
applied on the Strat-M® membrane or pig ear skin, according to the infinite-dose experimental condition (780 
ul/cm 

2 ). The profile of the penetration kinetics was determined by quantify the amount of molecule absorbed at 
different time-points (1, 2, 4, 6, 8 hours), by means of HPLC analysis. 

Both diffusive systems show a similar trend for caffeine and LIP1 penetration kinetics. The Strat-M® skin 
model shows a lower barrier function than the pig skin biopsies, whereby the PGOA vehicle exhibits a higher 
penetration, enhancing the effect for both diffusive chambers and skin surrogates. Most interestingly, MIVO 
diffusive system better predicts the lipophilic molecules (i.e. LIP1) permeation through highly physiological fluid 
flows resembled below the skin models. 

Introduction 

The skin tissue is an effective barrier, representing a fundamental in- 
terface between the human body and the external environment. Based 
on its chemical-physical features, it forms a protective layer against 
harmful environmental influences such as ultra-violet light, microorgan- 
isms, pollutants and environmental toxins, pesticides, or other chemi- 
cal drugs. Moreover, skin regulates temperature and homeostasis of the 
body, particularly by limiting the loss of water [1] . 

Dermal absorption assays are routinely adopted to predict risks from 

skin exposure to chemicals, but also to demonstrate benefits after topic 
application of cosmetics, medical device or therapeutic active ingredi- 
ent. In this context, the Organization for Economic Co-operation and 
Development (OECD) and the United States Environmental Protection 
Agency have produced guidelines for the in vitro and in vivo assess- 
ment of percutaneous absorption [2] , that establishes the passage of 
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compounds across the skin. This process is basically divided in three 
steps [3] : i) penetration, which consists of the entry of the chemical 
compound into the stratum corneum, build up by an intracellular lipid 
matrix of mainly ceramides, cholesterol and free fatty acids [ 4 , 5 ]; ii), 
permeation , namely the gradual passage of the substance through the 
subsequent layers, which are both functionally and anatomically distinct 
from the stratum corneum; iii) the uptake t into lymphatic and blood 
vessels [5-8] . Interestingly, according to the skin absorption outcome, 
the classification of these testing compounds may range from cosmetics 
to “medical devices made of substances ”, that need to be absorbed in 
order to achieve their intended action [9-11] . 

Therefore, there is increasing demand for reliable and reproducible 
in vitro and ex vivo skin absorption methods that accelerate the chemi- 
cals testing and the measurement of their absorption percentage. In the 
last two decades, the European Union and national legislations have 
stipulated that animal experiments should be avoided whenever scien- 
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tifically feasible, in line with the 3Rs (reduce, replace, refine) approach 
[2] . Furthermore, owing to the difference in skin structure, animal stud- 
ies do not always reflect the human situation [2] . The estimation of per- 
cutaneous absorption of compounds using excised animal skin is widely 
accepted for the toxicological risk assessment [12] . Porcine skin has 
been re-cognized as an appropriate tissue for prediction of human skin 
permeability for some years, despite the lower barrier function of this 
tissue compared with human skin [13-17] . 

Recently, numerous skin surrogate systems and human skin equiv- 
alents (HSEs) have been developed to study skin penetration to over- 
pass limits of animal sources. HSEs are typically constructed by cultur- 
ing human keratinocytes on appropriate substrates [18] , providing a 
good-quality control of the system and species relevance. Consequently, 
some reconstructed tissues (i.e. Episkin and EpiDerm) have already 
been validated under specific applications, such as for skin irritation 
[ 19 , 20 ]. In general, they have proved a lower barrier function than hu- 
man skin [ 18 , 21 , 22 ], but for hydrophilic compounds (i.e. ethyl ascorbic 
acid [23] and caffeine [21] ) some HSEs (i.e. LabSkin, EpiDerm, EpiSkin, 
SkinEthic) represent a valuable option to carry out transdermal delivery 
investigations, even though some regulation guidelines still have to be 
updated [ 10 , 24 ]. 

Artificial membranes have been also fabricated and employed as syn- 
thetic skin alternatives [25] . Non-lipid- and lipid-based membranes are 
cost-effective and reproducible tools to study the underlying physic- 
ochemical mechanisms of the passive drug diffusion, [ 24 , 26 ]. More- 
over, being non-biological models, these skin models may support high- 
throughput screenings, without lot-to-lot variability, safety and storage 
limitations [4] . 

The parallel artificial membrane permeability assay (PAMPA) may 
be represent an alternative to simulate dermal absorption of some com- 
pounds [ 25 , 27 , 28 ], whose results displayed a good correlation with . 
full-thickness skin (R 2 > 0.7). 

The Strat-M® membrane is an animal free, multiple layer polyether 
sulfone membrane, which is coated with skin lipids (e.g., ceramides, 
cholesterol, and free fatty acids), especially designed to mimicking the 
skin structure for transdermal diffusion testing . The hydrophobic li- 
pidic structure, which is coated on the membrane is composed of the 
main stratum corneum lipids, paired with the polyether sulfone mem- 
brane cut-off this membrane mimics a skin penetration more closely 
than other membranes, which are limited only on their cut-off definition 
[29] . These chemico-physical porperties make Strat-M® membrane a 
good skin model alternative to evaluate penetration flux and permeation 
of molecules, under infinite and finite dosing conditions [30] . However, 
due to their lower barrier function, artificial membranes typicaly lead 
to a higher penetration ability and penetration rate [ 12 , 13 , 31 ]. 

For ex vivo skin penetration studies the OECD guideline recommends 
pig ear skin as suitable skin surrogate to mimic human percutaneous 
penetration [ 24 , 32 ]. Pig ear skin shows similarities in morphology as 
well as penetration abilities and corresponds to that of human skin 
[33] .Typically, the passive diffusion of active ingredients is tested by 
culturing surrogate skin in a Franz Diffusion Cell (FDC) setup [34] . 
The FDC system can be either a static or flow-through setup. Although 
both are compliant with the OECD Test Guidelines 428, static FDC set- 
up remains simpler, lower-cost and more widely used diffusive system 

[ 12 , 24 ]. It consists of a receptor compartment filled with a physiologi- 
cal buffer solution, in which the compound is released after penetrating 
through the skin surrogate. Onto this surrogate a finite ( ≤ 10μL/cm 

2 ) 
or infinite ( ≥ 10μL/cm 

2 ) formulation dose can be topically applied into 
the donor compartment and allows the evaluation of penetration kinet- 
ics over time [ 35 , 36 ]. Finite dosing represents more closely application 
and usage condition, whereas an infinite dosing helps to understand and 
elaborate permeation abilities due to a steady state penetration and a 
constant high formulation concentration. The penetration kinetics inter- 
pretation underlines the predicted bioavailability of the active ingredi- 
ent, which is important to ensure the efficacy and the exposure to the 
living cell entity and a targeted drug delivery. The hydrophilic alkaloid 

caffeine is recommended as a model compound by the OECD guideline 
for in vivo, ex vivo, and in vitro percutaneous penetration testing due to 
its well-known penetration behaviour [32] . To optimize and ensure tar- 
geted delivery of ingredients into the skin, the formulation needs to be 
designed individually [37] . Most ingredients are formulated into a stan- 
dard formulation (vehicle) containing water, glycols and fatty acids for 
penetration testing based on their physico-chemical properties and sol- 
ubility characteristics [38] . Thereby, propylene glycol (PG) is the most 
used glycol and is often combined with other penetration enhancers like 
oleic acid (OA) to test ingredient penetration [39] . 

In this work, we compared the FDC with a novel ready-to-use, com- 
partmental technology , named MIVO® - Multi In Vitro Organ de- 
vice, compliant with the OECD 428 guideline’s definition of a diffusion 
cell and able to properly resemble the mono-directional physiological 
capillary-like flow below the tissue. MIVO has been already adopted to 
carry out diffusion studies in gut absorption [40] , tumor cells intrava- 
sation [41] and cancer drug efficacy testing [42] . 

Here, molecules having different lipophilicity (expressed as log 
p values) although same molecular weight (i.e. caffeine and LIP1, 
acronym for 1,3-Benzodioxol-5-ylmethylurea lipophilic molecule) have 
been adopted as testing molecules for skin permeation assays through 
two human surrogate models, the Strat-M® membrane and the pig ear 
skin, carried out employing both FDC, as it is the standard in vitro 
method for this type of study, and MIVO®. Also, computational fluid- 
dynamic (CFD) simulations have been performed to inspect the flow 

field beneath the skin in the receptor of both diffusion cells considered. 

Materials and method 

Diffusive chambers 

MIVO® system 

The MIVO® device is a disposable cell culture chamber able to host 
living tissues (e.g. cellular monolayers, 3D reconstructed tissues, tissue 
biopsies) or artificial membranes under physiological conditions, pro- 
viding a multiple fluidic circulation that mimics the human circulatory 
system with the vascularization of the tissue of interest. The diffusion 
cell designed and implemented in this work is schematically represented 
in Figure 1 , panel A, showing features in compliance with the OECD 
428 rule for in vitro skin absorption method. Specifically, the human 
skin surrogate separates the donor compartment from the receiver one, 
exposing a surface area of 0.43 cm 

2 suitable for drug administration. 
The receiver compartment has been designed to be connected to a peri- 
staltic pump inducing a monodirectional flow: then, a capillary velocity 
can be set up below the skin barrier, emulating the real physiological 
conditions. A three-way valve placed in the fluidic circuit allows the 
sampling of the media over time, without affecting the sterility environ- 
ment and the tissue. The whole system is hosted within the cell culture 
incubator with controlled atmosphere (i.e., 32°C, 5% CO2). 

Strat-M® membranes and pig skin biopsy discs were placed within 
MIVO®; an add-on equipped with a biocompatible o-ring avoiding any 
fluid leakage blocks the skin models inside the MIVO® chamber. The 
donor compartment was filled with a volume of caffeine formulations 
according to the infinite-dose experimental condition (780uL/cm 

2 ), and 
the receiver one was filled with 2.3 mL of calcium and magnesium en- 
riched phosphate buffered saline (PBS), at a flow rate of 2 mL/min in or- 
der to have below the skin surrogate a mean flow velocity (of 0.1 cm/s), 
resembling the capillary flow [ 42 , 43 ]. The experiment with Strat-M®
was performed in triplicate, while the one with pig ear skin was per- 
formed with 6 replicates. For both skin models, 400 𝜇L (or 20%) of the 
circulating solution in the receiver compartment were collected at differ- 
ent time-points (1, 2, 4, 6, 8 hours), in order to assess the quantity of caf- 
feine/LIP1 accumulating into the receiver chamber over time. The sam- 
ples were filtered through a cellulose acetate membrane filter (0.22 𝜇m 

pore size) and analyzed through High-Performance Liquid Chromatog- 
raphy (HPLC). 
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Figure 1. Diffusive chambers. Schematic representation of the diffusive chambers where the tissue (Strat-M® or pig skin) is placed for performing dynamic absorption 
studies. Panel A: the MIVO® fluidic chamber; Panel B: Franz Diffusion Cell. 

Table 1 

Technical features of MIVO and FDC. 

Diffusive chamber MIVO FDC 

Flow regimes Laminar, monodirectional, spatially homogeneous Rotational, slight turbulent, spatially non homogeneous 
Reynolds number ∼20 < 2000 ∼1700 < 2000 
Driving force Peristaltic pump Stirring bar 
Media Sampling system Through a three-way valve Through the sampling port 
Receptor Media volume Flexible, ranging from 2.5 to 5 ml From 5 to 20 ml according to the model 

Skin models 
Cells monolayer on inserts, membranes (eg StratM, Permeapad), 3D 
reconstructed skin tissues (e.g. epiDerm, epiSkin SkinEthic, 
Labskin), biopsies 

Membranes, biopsies 

Skin clamping Auto-centering and blocking of inserts, add-on with o-ring for 
biopsies 

Metallic clamps 

Sterilization Already sterile and ready to be used Autoclavable, after a pre-clean/wash 

FDC system 

The FDC system consists of a receiver compartment filled with 5 
mL PBS, in which the compound is released after penetrating through 
the skin surrogate. Onto this surrogate the infinite-dose experimental 
condition (780 𝜇L/cm 

2 ) is topical applied into the donor compartment 
and allows the evaluation of penetration kinetics over time [ 33-35 , 44 ]. 
Figure 1 B shows a schematic illustration of the FDC with its magnetic 
stirrer and its thermostatically controlled water bath, to maintain a con- 
trolled temperature of 32°C. 

The Strat-M® membranes and pig skin biopsy discs as human skin 
surrogates were placed onto the FDC (Ø 9 mm, diffusion area 0.64 cm 

2 ) 
from Logan Instruments Corp. (Somerset, USA). The Strat-M® mem- 
brane was placed shiny side up and the pig skin dermal side down onto 
the receiver compartment. The experiment with the Strat-M® mem- 
brane was performed with 6 replicates, while the one with pig ear skin 
was performed with 8 replicates. After an experimental equilibration for 
30 min, different exposure times (1, 2, 4, 6, 8 hours) were adopted and 
1000 𝜇L (or 20%) of the receiver compartment were collected and fil- 
tered through a cellulose acetate membrane filter (0.22 𝜇m pore size). 
The solution was HPLC analyzed and replaced with fresh PBS. A sum- 
mary of the main features of MIVO and FDC was shown in Table 1 . 

Chemicals 

Caffeine, 1,3-Benzodioxol-5-ylmethylurea (LIP1), Milli-Q® (water), 
acetonitrile, were purchased from Merck KGaA (Darmstadt, Germany). 
Propylene glycol (PG), Oleic acid (OA), and calcium and magnesium 

enriched PBS solution were purchased from Sigma Aldrich by Merck 

KGaA (St. Louis, USA). Formulations containing either water or PGOA 
(95:5) with either 0.7% caffeine (w/w) or LIP1 were prepared. 

Caffeine and LIP1 were selected as reference molecules having same 
molecular weight and different lipophilicity ( Table 2 ). 

Skin models: Strat-M® and pig skin biopsies 

The Strat-M® membrane purchased from Merck KGaA (Darmstadt, 
Germany) is a non-animal based synthetic membrane build up by multi- 
ple layers of polyether sulfones coated with skin lipids, which mimics the 
penetration ability of human skin ( Figure 2 ). This lipid coating, which 
mimics the intercellular lipid matrix of the human stratum corneum, 
contains a combination of ceramides, cholesterol, free fatty acids, and 
other components with a similar specific lipid ratio to human skin sur- 
face [4] . 

Pig ear skin was used as a human skin surrogate for penetration test- 
ing. The pig ears (German domestic pigs, 6-month-old) were obtained 
from a local slaughterhouse (Brensbach, Germany). Freshly slaughtered, 
they were cleaned with water, dried using soft tissue and stored at + 4°C. 
The skin from the back of the pig ear was dermatomed with an electrical 
dermatome from Humeca BV (Borne, Netherlands). 500 μm thick split- 
skin punches with a diameter of 26 mm were obtained from each ear 
and stored for the maximum of 6 month at -20°C. 

HPLC 

The quantitative concentration of caffeine and LIP1 was determined 
using a HPLC (VWR-Hitachi ELITE LaChrom system) system. A Chro- 
molith® Performance RP-18e 100-4.6 mm (Merck KGaA, Darmstadt) 
column was used as the stationary phase at 30°C and at flow rate of 2.0 
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Table 2 

Physico-chemical properties of caffeine and LIP1. 

Caffeine 1,3-Benzodioxol-5-ylmethylurea (LIP1) 

Chemical structure 

Molecular Formula C 8 H 10 N 4 O 2 C 9 H 10 N 2 O 3 
Molecular weight [g/mol] 194.19 194.19 
Log P -0.1 (exp.) 0.6 (exp.) 
CAS number 58-08-2 65609-28-1 

Figure 2. Strat-M® skin model. Schematic illustration of the skin morphology and the multilayered structure of the Strat-M® membrane to compare the different 
skin layers with a scanning electron microscopic image of a Strat-M® cross-section. 

mL/min, with an isocratic mobile phase of 90% water and 10% acetoni- 
trile (HPLC gradient grade, Merck KGaA, Darmstadt) for caffeine and a 
mobile phase of 80:20 for LIP1. The caffeine amount was determined at 
a detection wavelength of 272 nm, and LIP1 at 285 nm, using a DAD 
l-2450 detection unit. Prior the analysis, the samples were mixed in auto 
sampler screw vials and analyzed with an injection volume of 60 μL of 
each sample (n = 4). The specificity of the HPLC run was controlled via a 
blank injection and an internal standard solution. The quantification lin- 
earity was confirmed by a six-point calibration series (0.5-250.0 𝜇g/mL) 
with linear regression confirmation of R 2 > 0.99 in all cases. Accuracy 
and precision of the HPLC run was determined within the internal ac- 
ceptance criteria variation < 2 %. 

Statistical analysis 

Calculations were made using Microsoft® Excel® Office 365 and sta- 
tistical analysis were performed using GraphPad Prism 8.03. All data 
sets are shown as the mean ± standard deviation (SD) with statisti- 
cally significant differences determined by t-test (the Bonferroni method 

for multiple comparisons was also applied) with probability (p) values 
< 0.05. 

Results 

Caffeine penetration kinetics using Strat-M®

The cumulative amount of caffeine penetrated through Strat-M®was 
derived for the two experimental conditions (PGOA and Milli-Q® as 
donor solutions), showing statistical difference between the two diffu- 
sive chambers, although similar trend were observed ( Figure 4 ). The 
passage of caffeine was enhanced ( ∼10X) when using PGOA as a ve- 
hicle ( Figure 4 A); moreover, the caffeine absorption through the Strat- 
M®membrane shows a linear trend during time in the Milli-Q® solution 
( Figure 4 B), while in PGOA an initial plateau was observed after 6 hours. 

Caffeine penetration kinetics using pig skin biopsies 

The cumulative amount of caffeine penetrated through pig skin tis- 
sues was measured for both formulations (PGOA and Milli-Q®), compar- 
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Figure 3. Pig biopsy vs. Strat-M®. Image of a 500 μm thick pig split-skin biopsy (on the left) and the Strat-M® membrane (on the right). 

Figure 4. Cumulative amount of Caffeine penetrated through the Strat-M® membrane. Comparison of the caffeine penetration kinetics through Strat-M® membrane 
in FDC and MIVO® systems with PGOA (A) and Milli-Q® water (B) as vehicle solution. Values are presented as mean ± SD. 

ing the FDC and the MIVO® chambers ( Figure 5 ) and showing statisti- 
cal difference between the two diffusive systems only in MilliQ® condi- 
tions. The PGOA formulation ( Figure 5 A) led to an increasing amount of 
caffeine in the receiver chamber over time, despite the resulting penetra- 
tion (ug/cm 

2 ) was overall lower than for Strat-M® ( ∼12X for FDC and 
∼17X for MIVO®). Likewise, when caffeine was topically applied within 
the Milli-Q® vehicle ( Figure 5 B), its penetration over time through the 
pig skin was lower than the one resulted with Strat-M® membrane. 

LIP1 penetration kinetics using Strat-M® and pig skin biopsies 

Similarly to the caffeine in PGOA ( Fig. 4 A and Fig. 5 A), the LIP1 in 
PGOA formulation displayed a gradual increase of its passage through 
Strat-M and pig skin, with an initial plateau observed at the end- 
ing points for Strat-M ( Figure 6 A) and a linear trend for pig skin 
( Figure 6 B) for both diffusive systems. Like for caffeine, also LIP1 was 
more absorbed through the Strat-M than the pig skin ( ∼6X for FDC and 
∼3X for MIVO®). 

The cumulative amount of LIP1 was statistically higher in MIVO than 
in FDC already after 2 hours using Strat-M and 6 hours using pig skin. 

Interestingly, values of caffeine in PGOA are much higher ( ∼4X after 
8hr) than those of LIP1 using Strat-M in FDC system ( Figure 6 C), while 
no significant differences are observed between caffeine and LIP1 using 

pig skin in FDC system ( Figure 6 D). On the other side, as expected for 
lipophilic molecules applied onto skin tissues, MIVO displays a higher 
LIP1 permeation ( ∼3X after 8hr) than caffeine using pig skin model 
( Figure 6 D), while artificial Strat-M membrane displayed similar per- 
meation behavior for caffeine and LIP1 ( Figure 6 C). 

A comparison of the caffeine and LIP1 penetration for all imple- 
mented experimental conditions after 8 hours, with statistical analysis, 
was also shown ( Figure 7 ). 

Mathematical approach to determine the diffusion coefficient 

Permeation of an active ingredient through the skin’s stratum 

corneum is described as diffusion process in which active transport plays 
no role [45] . Mathematically, skin absorption can be described by Fick’s 
laws of diffusion. 

The first Fick’s law is specific to an infinite dose condition [45] , 
which is described for experiments with a topical amount higher than 
100 μL/cm 

2 (or higher than 10 mg/cm 

2 ): 

𝐽 = − 𝐷𝑑 𝐶∕ 𝑑 𝑥 (1) 

where J is the rate of transfer per unit area (flux) (g/cm 

2 /h), dC is the 
concentration gradient (g/cm 

3 ), dx is the linear distance travelled (cm) 
and D is the diffusion coefficient (cm 

2 /h). 
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Figure 5. Cumulative amount of Caffeine penetrated through pig skin. Comparison of the caffeine penetration kinetics through pig skin biopsies in FDC and MIVO®
systems with PGOA (A) and Milli-Q® water (B) as vehicle solution. Values are presented as mean ± SD. 

Figure 6. Cumulative amount of LIP1 penetrated through the Strat-M® membrane and pig skin. Comparison of the LIP1 penetration kinetics through Strat-M®
membranes (A) and pig skin biopsies (B) with FDC and MIVO® and in comparison with Caffeine penetration kinetics through Strat-M® membranes (C) and pig skin 
biopsies (D). Values are presented as mean ± SD, the values obtained by using the two systems are compared using paired t-Test statistics (p < 0.05). 

Thereby a steady-state flux, J ss , is commonly assessed in vitro and 
ex vivo in diffusion cells (e.g., FDC and MIVO®), consisting of a donor 
compartment separated from the receiver compartment by a human skin 
surrogate. The ingredient is applied to the stratum corneum side of the 
skin, and an accumulation of active ingredient in the receiver compart- 
ment is monitored by repeated concentration measurements in the re- 
ceiver medium over time. 

Under infinite dose conditions, dC can be replaced by the known 
donor concentration, c D , and the permeated mass per time is assumed 

to be constant. Therefore, a plot of the permeated mass per unit area 
versus unit time, yields a linear function with a slope which represents 
the steady-state flux. 

The apparent permeation coefficient, P app , which represents an in- 
dependent measure of the skin resistance against permeation of the ex- 
amined active ingredient, is frequently calculated as: 

𝑃 𝑎𝑝𝑝 = 𝐽 𝑠𝑠 ∕ 𝑐 𝐷 (2) 
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Figure 7. Caffeine and LIP1 permeation in all the experimental conditions. Quantity of caffeine penetrated after 8 hours through Strat-M® (A) and pig skin (B) with 
FDC and MIVO® and quantity of LIP1 through Strat-M® (C) and pig skin (D) with FDC and MIVO®. Values are presented as mean ± SD, the values obtained by 
using the two systems are compared using paired t-Test statistics (p < 0.05). 

Table 3 

The table summarizes the values of the steady-state flux and the apparent permeation coefficient for all the experimental conditions. 

Steady-state Flux J ss and Apparent Permeation Coefficient P app 

Skin Model 

Strat-M® Pig Skin 

FDC MIVO® FDC MIVO®

LIP1 in PGOA J ss (μg/cm 

2 /h) 83.59 123.13 14,53 31.97 
P app (cm/s X 10 

− 6 ) 3.32 4.88 0,63 1.27 
Caffeine in PGOA J ss (μg/cm 

2 /h) 268.18 216.01 17.2 10.05 
P app (cm/s X 10 

− 6 ) 10.64 8.57 0.68 0.40 
Caffeine in Milli-Q® J ss (μg/cm 

2 /h) 20.94 16.51 2.54 4.75 
P app (cm/s X 10 

− 6 ) 0.83 0.65 0.1 0.19 

because this value only depends on the donor concentration used in the 
given experiment. 

J ss and P app were derived for the two skin models and the caf- 
feine/LIP1 vehicle from the linear part of the respective absorption 
curves by linear regression, by using an automated approach [46] , if at 
least four data points are within the linear part of a curve (R 2 > 0.92). 

The time to achieve steady-state conditions, under infinite dose con- 
ditions is referred as lag time (t) and the preceding period is the lag- 
phase. Lag time is a function of the active ingredient loading the stratum 

corneum and dermis, diffusivity, and thickness of the skin. Lag time is 
the time required for the diffusion flow to become stable. By using the 
Lag time calculation [47] , the diffusion coefficient can be derived: 

𝑡 = 𝑥 2 ∕6 𝐷. (3) 

Table 3 and Table 4 report respectively the steady state flux and the 
percentages of caffeine and LIP1 absorbed after 8 hours under different 
conditions. 

Table 4 

Percentage values of penetrated caffeine and LIP1 through Strat-M®membranes 
and pig skin biopsies in all the experimental conditions. 

% of penetrated through the skin barrier 

Skin Model 

Strat-M® Pig Skin 

FDC MIVO® FDC MIVO®

LIP1 in PGOA 11.6% 17.6% 2.5% 5.4% 

Caffeine in PGOA 36.2% 28.6% 3.1% 1.7% 

Caffeine in Milli-Q® 3.2% 2.6% 0.4% 0.8% 

Computational fluid dynamic simulation of fluid flow within MIVO and 

FDC 

Fluid dynamic simulations were performed both in MIVO and in 
FDC environments to simulate the fluid flow profiles, mean velocities 
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Figure 8. Computational Fluid-dynamic simulations of FDC and MIVO. Velocities distribution at the plane below the skin within FDC and MIVO (panel A). Velocity 
profiles at the cut line, compared to the physiological values, within FDC and MIVO (panel B). 

and shear stresses below the skin model ( Figure 8 ). The 3D domain was 
drawn based on the dimensions of the two diffusive chambers used for 
skin permeation assays. The physical outputs were modeled using Com- 
sol Multiphysics 5.6 (Laminar Fluid Flow module). The fluid was sup- 
posed to be laminar, incompressible, and not turbulent. The velocity 
profiles were calculated according to Navier-Stokes and the continuity 
equation [ 48 , 49 ]. In the MIVO environment, the flow rate was set to 
Q = 2 mL/min to generate velocity resembling the capillary blood flow, 
while in the FDC the flow was generated by a stirring bar (length of 7 
mm, rotational frequency 10Hz). An iterative geometric multigrid (GM- 
RES) algorithm was used to solve the equations. A no-slip condition was 
fixed on the boundary of the geometry. 

Discussion 

In the fields of pharmaceutical industry, reliable skin penetration 
data of active ingredients are indispensable, since it affects the bioavail- 
ability, defined as the amount of molecules that reaches the systemic 
circulation [50] . Various studies have considered the impact of different 
physico-chemical formulations and skin models on permeation assays. 
Moreover, the use of in vitro diffusion cellss has evolved into a major 
research methodology, providing key insights towards more reliable, re- 
producible, and standardized in vitro and ex vivo methods. 

In vitro models frequently involve the use of artificial membranes to 
model realistic human skin penetration features. Although these mem- 
branes do not model the cellular mediated phenomena affecting the 
molecule passage through a living tissue, diffusion studies can be carried 
out. In particular, artificial membranes may be preferred to skin biop- 
sies as they are more easily resourced, less expensive, structurally sim- 
pler and lead to a faster outcome [51] . Another challenging approach 
is based on in vitro human epidermis and dermis cells models, build- 
ing human skin equivalent (HSE). Some commercially available HSE 
like Graftskin TM , SkinEthic TM , LAbskin TM , EpiDerm and Episkin, have 
been already adopted for penetration assays [ 52 , 53 ] and to understand 
metabolic skin response [ 13 , 31 ] within exploratory assays, while reg- 
ulatory bodies are currently involved in guidelines updates., Also ar- 
tificial membranes, although to a higher penetration ability and pene- 
tration rate [ 12 , 13 , 31 ], are currently adopted to provide useful perme- 
ation measurement for multiple formulations with higher throughput 
[4] . Indeed, they exhibit superior data reproducibility, as in vivo vari- 
ables such as donor age, sex and anatomical site are excluded [51] . In 

this context, the Strat-M® represents an interesting option among syn- 
thetic skin models, since it is a membrane-based model with diffusion 
characteristics well-correlated to human skin [4] . However, it does not 
fully resemble the heterogeneous multi-layer structure of human skin. 

For these reasons, an effective alternative is represented by animal 
skin biopsies as indicated in the OECD TG 428 guidelines [32] . Among 
these, pig ear skin is currently the most widely used, given its histo- 
logical similarities to human skin, with a comparable stratum corneum 

thickness [ 54 , 55 ]. 
In this work, a comparative study was performed by using both syn- 

thetic non-animal-based membrane (i.e., Strat-M®) and pig ear skin 
biopsies for assessing the penetration of two molecules with similar 
molecular weight but different lipophilicity: caffeine, a reference OECD 
428 substance, and LIP1, a lipophilic test substance. By applying such 
testing molecules to the skin under infinite dose conditions, we expected 
that these penetrate into and diffuse through the stratum corneum, de- 
pending on their physico-chemical properties. [ 56 , 57 ] Indeed, a contin- 
uous increase of the caffeine and LIP1 penetration was observed up to 8 
hours in all experimental conditions; in particular, Strat-M® turned out 
to be more permeable than pig biopsy, as already reported for synthetic 
membranes, especially for hydrophilic molecules [13] ; this i can be due 
to a different morphological and histological structure of the skin tissue. 

Moreover, despite artificial skin membranes do not fully resemble 
the proper passive route of molecule permeation, a lower variabil- 
ity, and therefore a higher reproducibility, was observed for the Strat- 
M® model than pig ear biopses, as expected [31] . Although the same 
anatomical site (i.e., pig ear) was selected for all donors, this high vari- 
ability is intrinsic to the model because of the biopsy structure, age and 
hydration state of the skin that may differ from one donor to another 
[45] . 

Transdermal pharmacokinetic studies allow to recognize the fate of 
the new formulations/drugs applied to the skin, to evaluate what frac- 
tion of the applied doses have been effectively absorbed, and also to 
determine the bioequivalence of the generic products [58] . To better 
resemble the in vivo situation, where systemic circulation rapidly clears 
permeants , diffusion chambers hosting skin models have been widely 
adopted as more reliable alternative to the static condition [59] . Among 
these, FDC systems are used since many years, under the two available 
configurations: static and flow-through [34] . In both systems the recep- 
tor fluid is stirred in a non-physiological way, but the pivotal difference 
between the two configurations is the continuous fluid replacement in 
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the flow-through type [ 10 , 24 ]. This further implementation makes the 
flow-through system more reliable than the static counterpart, mimick- 
ing the supply of fresh fluid media as it happens in vivo thanks to the 
continuous tissues vascularization. On the other side, flow-through cells 
are labor-intensive, introducing an additional lag time and augment ex- 
perimental costs (for additional pumping equipment and larger volume 
of fresh media), making the use of the static device preferable and more 
widely diffused among testing laboratories [ 12 , 24 ]. Furthermore, it be- 
comes fundamental that the fluid-dynamic environment implemented 
within the diffusion cell could be highly reliable and biomimetic in terms 
of flow velocities and mass transports profiles, that affect the diffusion 
kinetics of the testing ingredient [42] . 

For these reasons, MIVO® system has been recently employed as al- 
ternative diffusion cell, due to its ability in reproducing physiologically 
relevant flow culture conditions. MIVO®, as FDC systems, consist of in- 
ert non-adsorbing material with receptor compartment volumes of 2 –
10 mL and surface areas of exposed membranes of about 0.2 – 4 cm 

2 , 
according to the OECD 428 guidelines. The fluid flow is imposed within 
MIVO through the adoption of a peristaltic pump, which allows to finely 
regulate the flow rate, the flow direction and the velocity profile below 

the hosting tissue. In particular, based on the inner design of the receptor 
chamber, by setting an unidirectional flow rate of 2 mL/min it is possible 
to reproduce values within the capillary blood velocity range, providing 
a micro-physiological tool for pharmacokinetic and pharmacodynamic 
studies with high predictability and reproducibility outcome, as already 
reported for gut absorption assay [60] and drug efficacy assays [42] . 

As evidence of this, CFD simulations of velocity profiles below skin 
have been thus performed for both FDC and MIVO. A spatially homo- 
geneous velocity profile consistent with the capillary blood flow was 
observed below the skin cultured within MIVO, whereas a rotational 
not physiological profile was detected within FDC, showing values rang- 
ing from the arterial to veins velocities in the outer and inner region, 
respectively, thus making MIVO a diffusion system more suitable to re- 
capitulate the human blood flow dynamics ( Figure 8 ). As a matter of 
fact, a laminar fluid flow was noticed within the MIVO apparatus with- 
out any vortex formation [42] , whereas FDC exhibited a slight turbu- 
lence (Reynolds number approximately equal to 1700). In particular, 
this undesirable vortex, being far from reproducing capillary physiolog- 
ical settings, may lead to inadequate molecule distribution throughout 
the receptor compartment since it has a potential to disrupt the static 
fluid layer adjacent to the membrane; such an effect changes one of the 
assumptions of Fick’s law, namely that the calculation of the diffusion 
coefficient includes a contribution from the boundary layer [61] . 

Importantly, MIVO® provides a similar permeation trend to FDC sys- 
tem when challenged with the Strat-M® for the caffeine in PGOA as 
well as the Milli-Q® formulation. According to the skin-related physi- 
cal features of the Strat-M®, caffeine penetration across the membrane 
was dependent on the vehicle used : in particular, the PGOA vehicle en- 
hanced the ingredient penetration through both the Strat-M® ( ∼10X for 
both diffusive chambers) and the pig skin ( ∼8X and ∼3X for FDC and 
MIVO®, respectively). 

Interestingly, the positive effect of PGOA was constant in the two 
diffusion cells where the artificial membrane was adopted, confirming 
the good reliability of MIVO® for permeationassays. Moreover, the per- 
centage of caffeine permeated through pig skin in MIVO® was in line 
with the observed values in Schäfer-Korting [62] . However, statistically 
significant differences were observed between MIVO® and FDC, with 
higher permeation values measured in FDC. To better investigate these 
differences, a different molecule having the same molecular weight but 
different lipophilicity (i.e. LIP1) was used . 

By using both Strat-M® and pig skin models, MIVO® showed higher 
cumulative amount of LIP1in PGOA permeation than that measured in 
FDC, although a similar slope was observed. 

In particular, by using the skin tissue as a model, the lipophilic LIP1 
was more absorbed than caffeine with MIVO® system, whereas FDC 
showed the same permeation of caffeine and LIP1 despite their different 

lipophilic properties. This could be cross-correlated with a more phys- 
iologically relevant fluid flow conditions below the skin tissue hosted 
within MIVO rather than FDC, properly recapitulating the faster pas- 
sage of lipophilic molecules than hydrophilic ones. Interestingly, a pos- 
itive penetration enhancing effect of OA in increasing diffusion through 
skin was observed also for LIP1 molecule. This is mostly due to the hy- 
drophobic lipidic structure of the Strat-M® top layer mimicking the tight 
epidermal stratum corneum [31] . Considering its barrier characteristics 
and water resistance, the stratum corneum is in fact the main layer that 
limits drug absorption through the skin [ 36 , 63 , 64 ]. The major route of 
skin permeation is through the intact epidermis, and two main path- 
ways have been identified: the intercellular route through the lipids of 
the stratum corneum and the transcellular route through the corneo- 
cytes. In both cases, the molecules diffuses into the intercellular lipid 
matrix, which is recognized as the major determinant of absorption by 
the skin [65–69] . 

On the contrary, the Milli-Q® formulation led to a lower caffeine 
penetration by using the FDC, confirming the key chemical role of the 
PGOA: the effects of the OA penetration enhancer on skin barrier func- 
tion have been widely studied. Recent studies suggested that OA may 
reduce reversible the stratum corneum lipid bilayer density and thick- 
ness [70] and disrupts the skin barrier facilitating water transport [71] . 

Besides comparing two human skin surrogate models and two vehi- 
cles, this paper aimed to compare a novel diffusion system (i.e., MIVO®) 
with the FDC under dynamic in vitro circumstances to provide reliable 
data on penetration of caffeine and LIP1, having same molecular weight 
but different lipophilicity, as suggested by the OECD recommendations. 

The results of the comparative analysis highlighted that the MIVO®
diffusion chamber shows comparable penetration trend with the stan- 
dard FDC system ( Table 3 ), and a possibly better prediction of the be- 
havior of lipophilic molecules. Then, since the FDC has been adopted 
as a reference diffusive chamber by the OECD guidelines, the MIVO®
device could be adopted as an efficient platform for predicting the pen- 
etration kinetics of different molecules, or to perform prescreening tests 
before OECD acceptance. 

Conclusion 

In this manuscript the FDC and a novel micro-physiological system 

(MIVO®) are compared as in vitro platform to determine percutaneous 
skin penetration. The penetration ability of caffeine and LIP1 through 
the artificial Strat-M® membrane and pig ear skin, as human skin surro- 
gates, are tested. Both systems show a continuous increasing penetration 
up to 8 hours, with a higher overall penetration flux for the Strat-M®
membrane than pig skin. The FDC and MIVO® system demonstrated 
similar penetration kinetic profiles for caffeine and LIP1 as penetrating 
ingredient, when topically applied. Pig skin tissue displayed a more per- 
missive behavior for lipophilic molecules in the MIVO diffusive system, 
in line with in vivo data, highlighting the importance to properly re- 
semble the capillary blood circulation within the diffusive systems. This 
study provided evidence on a reliable comparability for penetration test- 
ing, using the two diffusive chambers, both compliant with OECD 428 
guidelines, to determine dermal delivery of active ingredients Fig. 3 . 
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